Publications
2016
OBJECTIVE
Prior hypothesis-driven studies identified immunophenotypic characteristics associated with the control of HIV replication without antiretroviral therapy (HIV controllers) as well as with the degree of CD4 T-cell recovery during ART. We hypothesized that an unbiased 'discovery-based' approach might identify novel immunologic characteristics of these phenotypes.
DESIGN
We performed immunophenotyping on four 'aviremic' patient groups: HIV controllers (n = 98), antiretroviral-treated immunologic nonresponders (CD4 < 350; n = 59), antiretroviral-treated immunologic responders (CD4 > 350, n = 142), and as a control group HIV-negative adults (n = 43). We measured levels of T-cell maturation, activation, dysfunction, senescence, functionality, and proliferation.
METHODS
Supervised learning assessed the relative importance of immune parameters in predicting clinical phenotypes (controller, immunologic responder, or immunologic nonresponder). Unsupervised learning clustered immune parameters and examined if these clusters corresponded to clinical phenotypes.
RESULTS
HIV controllers were characterized by high percentages of HIV-specific T-cell responses and decreased percentages of cells expressing human leukocytic antigen-antigen D related in naive, central memory, and effector T-cell subsets. Immunologic nonresponders were characterized by higher percentages of CD4 T cells that were TNFα+ or INFγ+, higher percentages of activated naive and central memory T cells, and higher percentages of cells expressing programmed cell death protein 1. Unsupervised learning found two distinct clusters of controllers and two distinct clusters of immunologic nonresponders, perhaps suggesting different mechanisms for the clinical outcomes.
CONCLUSION
Our discovery-based approach confirmed previously reported characteristics that distinguish aviremic individuals, but also identified novel immunologic phenotypes and distinct clinical subpopulations that should lead to more focused pathogenesis studies that might identify targets for novel therapeutic interventions.
View on PubMed2016
2016
2016
2016
2016
2016
The central nervous system (CNS) is an important target of HIV, and cerebrospinal fluid (CSF) can provide a window into host-virus interactions within the CNS. The goal of this study was to determine whether HIV-specific CD8(+) T cells are present in CSF of HIV controllers (HC), who maintain low to undetectable plasma viremia without antiretroviral therapy (ART). CSF and blood were sampled from 11 HC, defined based on plasma viral load (VL) consistently below 2,000 copies/ml without ART. These included nine elite controllers (EC, plasma VL <40 copies/ml) and two viremic controllers (VC, VL 40-2,000 copies/ml). All controllers had CSF VL <40 copies/ml. Three comparison groups were also sampled: six HIV noncontrollers (NC, VL >10,000 copies/ml, no ART); seven individuals with viremia suppressed due to ART (Tx, VL <40 copies/ml); and nine HIV-negative controls. CD4(+) and CD8(+) T cells in CSF and blood were analyzed by flow cytometry to assess expression of CCR5, activation markers CD38 and HLA-DR, and memory/effector markers CD45RA and CCR7. HIV-specific CD8(+) T cells were quantified by major histocompatibility complex class I multimer staining. HIV-specific CD8(+) T cells were detected ex vivo at similar frequencies in CSF of HC and noncontrollers; the highest frequencies were in individuals with CD4 counts below 500 cells/μl. The majority of HIV-specific CD8(+) T cells in CSF were effector memory cells expressing CCR5. Detection of these cells in CSF suggests active surveillance of the CNS compartment by HIV-specific T cells, including in individuals with long-term control of HIV infection in the absence of therapy.
View on PubMed2016